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Recently, various interior point algorithms related to the Karmarkar algorithm have been developed for
linear programming. In this paper, we first show how this “interior point™ philosophy can be adapted
to the linear ¢; problem (in which there are no feasibility constraints) to yield a globally and linearly
convergent algorithm. We then show that the linear algorithm can be modified to provide a globally and
ultimately quadratically convergent algorithm. This modified algorithm appears to be significantly more .

efficient in practise than a more straightforward interior point approach via a linear programming )

formulation: we present numerical results to support this claim.
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1. Introduction

Let A be an n X m matrix with m > n and consider the overdetermined system

ATx=b,

Correspondence to: Prof. Thomas F. Coleman, Computer Science Department, Cornell University,
4130 Upson Hall, Ithaca, NY 14853, USA.
This paper was presented at the Third SIAM Conference on Optimization, in Boston, April 1989.

* Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02)
of the Office of Energy Research of the U.S. Department of Energy under grant DE-FGO02-
86ER25013.A000, by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell
University, and by the Computational Mathematics Program of the National Science Foundation under
grant DMS-8706133.

** Research partially supported by the U.S. Army Research Office through the Mathematical Sciences
Institute, Cornell University and by the Computational Mathematics Program of the National Science
Foundation under grant DMS-8706133.




190 T.F. Coleman, Y. Li / An affine scaling method for linear ¢, problems

where row i of AT is denoted by a/, for i=1,..., m. The linear ¢, problem is to
find a vector x which is a solution to

min ¥ |a] x=b,]. (1)
xeR" i=1
Note that the objective function is piecewise linear; it is not differentiable at any
point x such that a!x = b,, for some index i. Moreover, it is well known that problem
(1) is equivalent to the following linear program (LP):

m
min Y (u;+v;)
TRV S

(2)

subject to a/x—u;+v;=b;, i=1,..., m,
u,‘ZO, v,'ZO, izl,...,m.

Thus, the ¢, problem can be solved by a general LP-solver. However, usually it is
more efficient to use techniques especially tailored to problem (1), e.g., [2] and [3].
Most such methods are related to the simplex method in that they involve notions
of an active set and pivoting or exchanging columns. These are finite algorithms.

Following Karmarkar’s work [11] several alternative approaches to linear pro-
gramming have recently been developed (e.g., [1, 10, 16, 19, 21]). Amongst the
various types of approaches, affine scaling methods (e.g.,[1, 21]) appear to represent
a relatively practical approach. It is difficult to give a crisp accurate definition of
an affine scaling method; however, the salient feature is the use of an affine
transformation, defined locally (i.e., at the current point). The advent of affine scaling
methods for linear programming raises the question: can such methods be tailored
to the linear ¢, problem? Indeed, an interior point strategy applied to the dual of
(2) has been suggested (see[12] and [17]). Such methods can be viewed as generating
an infinite sequence of approximate solutions {x;}.' However, despite numerous
connections to Newton-like processes (e.g., [16]), affine scaling methods, such as
Meketon’s algorithm [12], do not possess second-order convergence, even in the
limit.

In this paper we propose a globally convergent affine scaling algorithm, for the
¢, problem, which is ultimately quadratically convergent (in the nondegenerate case).

1.1. Notations and definitions

In this paper, the vector r is defined to be the residual vector b—A"x. We use the
sign function sgn(r), where r is a vector, in the following sense: if o =sgn(r),

{ 1 ifr,=0,
—1 otherwise.

g;

! One can also take a finite view of such algorithms — assuming integer data and exact arithmetic.
This view leads to a complexity analysis; e.g., is the number of steps bounded by a polynomial in the
size of the problem? This is not our concern in this paper.
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We use e; to denote the ith elementary vector. We let &/(x) denote the indices of
zero residuals at any point x, i.e.,

A(x)={ilalx—b;=0},

and &/“(x) denotes the complementary set. (We will suppress the argument when
it is clear from context.) We use the subscripts 1 and 0 to denote the compressed
vector whose components correspond to the nonactivities and activities respectively,
€.8., &1 = &<, 8o = &« Similarly, A, and A, denote the columns corresponding to
zero residuals, Ajx — b, =0, and nonzero residuals. In some cases this denotation
will refer to the current point; otherwise, it will refer to the limit point. The usage
will be clear from context.

In our presentation, the multiplication between two vectors is a componentwise
operation. The operator |-| around a set, e.g., ||, denotes the cardinality of that
set. Otherwise it denotes the componentwise absolute values of a number, vector
or a matrix. The operator max(x, y) with two vectors as arguments defines a vector
whose components are the maximum of the corresponding argument vectors. If the
argument is a single vector, the result is the maximum entry; therefore max(x) of
a vector x denotes the maximum component of x. The operator null(A) denotes
the matrix whose columns form a basis for the null space of A, ie., if B=
null(A), AB =0 and rank(B) = n —rank(A). The left arrow x <y denotes setting y
to x.

The dual of (2) is

max bTA

A

subjectto AA =0, (3)
-1<A,<1, i=1,...,m

Definition 1. We say an ¢, problem is primal nondegenerate if at any point x the
vectors {a;: i€ &f(x)} are linearly independent.

Definition 2. We say an ¢, problem is dual nondegenerate if, for any A satisfying
Ax=0,[{A;: |A|=1}=m—n.

The optimal solution to (1) can be characterized in various ways. For exampie,
x is optimal if and only if there exists A € R" such that

Y sgn(a;x—b)a,= Y Aa, where—1<A,<1 Vied. (4)

e ie.d

Thus, A is clearly a feasible solution of (3). Note that, when & is empty,
Y..pcsgn(alx—b)a;=0. It is easy to verify that the optimality condition (4) is
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equivalent to the following: x is optimal for (1) if and only if there exists A e R™
such that

(a;rx—bi)*(Sgn(a-irx—bi)_Ai):O, izla""ma (5)
AL =0, (6)
—1=s)A,<1 Vied. (7)

This characterization is especially interesting because the nonlinear equation
(5) suggests the possibility of a Newton method. We explore this possibility in
Section 3.

Remark. Primal and dual nondegeneracy imply that the linear ¢, problem has a
unique minimizer, (x*, A*), e.g., [15]. Moreover,

| (x*)| = rank(Ay(x*)) = n,

| (x*)|=|{rF: A F|=1}=m—n.

1.2. An equivalent formulation

Following Seneta and Steiger [18], we consider an alternative (but equivalent)
formulation of the ¢, problem. Let Z denote a matrix whose rows form a basis for
the null space of A, i.e., Z' =null(A). Hence Z has dimensions (m —rank(A)) x m,
rank(Z) = m —rank(A), and AZ" =0. Then, defining r = b — A" x, the linear ¢, prob-
lem is equivalent to the following constrained ¢, problem with m variables r:

min {w(r)=rlh}

subjectto Zr=Zb. (8)

This formulation of the ¢, problem is useful for the derivation of our algorithms;
however, implementation of our methods, as discussed in Section 4, does not
necessarily involve the computation of the matrix Z.

Once again optimality conditions can take different forms. For example, r is a
solution to (8) if and only if there exists w € R and weR™ ¥ such that

Y sgn(r)e; =) ei#i+ZTW,
C o
Z(r—5b)=0, (9)

-1=u; <1 Vied.

Clearly the first system of equations in (9) imply that |(Z"w),;|<1 Vi e «. Therefore,
if we define A = Z"w, an equivalent expression for optimality conditions (9) is

r,(Sgn(r,)_A,):O, i=1,...,m, (10)
Z(r—5b)=0, (11)
—1<s\<1, ied (12)

Note that if x satisfies r= b— A"x, then (x, A) satisfies (5)-(7).
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This formulation is important to our design of a quadratically convergent
algorithm: equations (10) and (11) lead to a Newton process, which we introduce
in Section 3.

2. An affine scaling method

In this section we present a new affine scaling method for the linear ¢, problem.
Our approach maintains feasibility with respect to the equality constraints in (8);
the scaling involved in the computation of a descent direction is determined by the
distance from the current point to the lines of nondifferentiability (i.e., r; =0). It is
this notion that replaces the more standard ““distance from the boundary” definition
used in most interior methods (e.g., [1,9, and 21]). However, since the differentiable
region” in (8) is not connected, and since we do not know how to immediately
identify a connected differentiable region adjacent to the optimal point, our algorithm
must allow for the ability to cross lines of nondifferentiability.

Let D be a positive diagonal matrix.

Assuming we are in the differentiable region, we can define a descent direction
by the following ‘“‘trust region problem™:

. T
mp 8
subjectto Zd =0, (13)
”D”]d”2S 69

where & is a positive number reflecting the trust region size; g = g(r) is the gradient
of ¢s(r) =Y |r:|; the matrix D defines the shape of the ellipsoid created by | D™'d ||, <
8. We choose D = diag{|r;|'/’} and with this choice the ellipsoid is short in directions
corresponding to components of r; close to zero, and long in directions corresponding
to relatively large |r,|. The solution to (13) is of the form d, = ad where

d=-D*g—2Z"(ZD’Z")"'ZD?g). (14)

Here «a is a function of §, for small § > 0.

Rather than choose & a priori, we prefer to compute d by (14) and then define
a through minimizing a piecewise linear function (r + ad) along the ray d (allowing
for the ability to cross lines of nondifferentiability). Hence we must determine all
nonnegative breakpoints,

F={a;: ¢,>0,a;=—-r;/d}, (15)
and using this information determine the minimizer of ¢/(r+ ad) with respect to a:

c,[;(r+a*d)=m>i{)1 1/J(r+ad)=mi;1 Y(r+ad). (16)

? The differentiable region consists of all point r€ R™ such that [/, r, # 0.



194 T.F. Coleman, Y. Li / An affine scaling method for linear ¢, problems

We refer to a,, as the optimal breakpoint. The point a, is computed by considering
each break-point in # in turn, adjusting the gradient Vi(r) to reflect a step just
beyond the breakpoint and then determining if d continues to be a descent direction
for ¢(r). For example, if a. is the smallest positive breakpoint, then a step just
beyond this point yields the following gradient:

g =g—-2g.e,, where as=min{q;: a;€ ¥}. (17)

If (g7)"d <0 the next breakpoint is considered, etc. Since we want to stay in the
differentiable region of ¥(r), we cannot step all the way to the minimizer. Therefore
we take as our steplength

a=a;+7(a,—a;), where a,=max {a;: 0<a;<a,} (18)
Fuio}

and 0<7<1. Here, if a, is not the smallest positive breakpoint, a; is the largest
breakpoint smaller than the optimal breakpoint a,; otherwise, a;=0.
In summary, we have the following line search procedure for (r):

Piecewise Linear Line Search Procedure. Given 0<7<1 and d.
Step 1. Compute ¥ ={a;: a;=—r;/d;, rd; <0}.
Step 2. Find the optimal breakpoint a, such that

Y(r+ a*d)=mi{)1 Y(r+ad)=min ¢(r+ad).
a> aed

Step 3. Let a;=max 4 o 0< a; <a,}. Set the stepsize

a=a;+71(ay,— a;).

We now present the linearly convergent algorithm. Let r° be an initial differentiable
point satisfying Zr’= Zb; k< 0; 7€ (0, 1).

Algorithm 1.
Step 1. Define D* = diag{|r¥|'/*} and g* =sgn(r").
Step 2. Compute
dk — _(Dk)Z{gk _ (Zk)T[Zk(Dk)Z(Zk)T]*le(Dk)2gk}.
Step 3. Apply the Piecewise Linear Line Search Procedure with the constant 7

to determine a*. Then

rk+]<-—rk+a"dk, k< k+1.

Remarks. (1) Note that since the linesearch maintains nonzero residual com-
ponents, we have D* > 0; therefore, d* is well-defined and the linesearch guarantees

Y(rer) < P(ry).
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(2) We have also considered using D" = diag{|r}|} as our scaling matrix. Certainly
this choice is more consistent with other methods, e.g., [1,9, 21]. However, we have
not had success with D* = diag{|r¥|} in two aspects. First, as we will show the choice
D* = diag{|r{|'/?} leads to a hybrid algorithm that smoothly connects the linearly
convergent process to a second-order Newton method; we have been unable to
devise a similar hybrid scheme using D* = diag{|r¥|}. Second, it is not clear that the
choice D* = diag{|r}|} leads to a globally convergent process — certainly our conver-
gence proof does not apply in this case. The difficuity appears to be that the choice
D = diag{|r{|} produces directions too nearly tangential to the near activities thus
inhibiting the algorithm’s ability to cross lines of nondifferentiability. This is not
an issue in an interior point method since, in that setting, constraints are never
crossed due to the maintenance of feasibility.

3. A local Newton process

A Newton process for the ¢; problem can be defined by considering conditions (10)
and (11). Most importantly, consider (10) which we rewrite as

diag(r)(sgn(r)—Z"w)=0. (19)

In general this system is not differentiabie due to the discontinuities caused when
r;=0, for some i. However, system (19) can certainly be differentiated at any point
with no zero residual. Moreover, in a neighbourhood of a solution r*, sgn(r¥) will
remain constant for any i€ &/°(r*). Therefore, in a neighbourhood of r*, discon-
tinuities will be due only to the active equations, i € #(r*). As we formally establish
in Section 6, these discontinuities do not impede the local quadratic convergence
behaviour of a Newton process. Therefore, define g=sgn(r), D, =diag(r), and
D, =diag(g — Z"w); differentiate (19) and (11) to define a Newton correction for

(19),
D, -D,z"|[ Ar] [-D.(g—Z"w)]
{Z 0 ][Aw]_[ 0 J 20

Simple algebraic manipulation yields
Ar=-A"(AD;'D,A") ' Ag. (21)
Note that the step (14) used in the linearly convergent algorithm is equivalent to
d=—-A"(ADA") 'Ag. (22)

Itis this similarity in form that yields a smooth transition from the linearly convergent
algorithm in the previous section to the Newton method. Before presenting our new
algorithm, it is worth noting that the matrix AD;'D,A" is positive definite when
(r, w} is close enough to the solution (r*, w*) and [] r, # 0.
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Lemma 1. Assume (r*, w¥*) is a solution and the ¢, problem is both primal and dual
non-degenerate. Then there exists a neighbourhood of (r*, w*) such that when (r, w)
is within this neighbourhood, and no component of r is equal to zero, the matrix
AD;'D,A" is positive definite.

Proof. First we note that provided the diagonal of D, is zero-free,
AD,_]D,\AT= AODr_Ol D,\OA;I)-"' AID:l] D, 1A;r,

where the zero subscript refers to the active set at r*, i.e., rf =0, and the unity
subscript refers to the inactive set at r*. Hence, by definition, D}, is zero-free and
since D¥, =0, by complementary slackness (19), it follows that

A, (D% _]DT,AT‘—‘O.
Primal and dual nondegeneracy yield |&(r*)| = n, &°(r*) = m — n. Therefore
[A¥|<1 Vied(r").

Hence, for ie &(r*), there exists a neighbourhood around (r*, w*) such that
((sgn(r;) — A;)/r;) is positive and strictly bounded away from zero for all i € &/* and
r; #0. Since A, is full rank (by primal nondegeneracy) the result follows. [

Lemma 1 implies the surprising result that Newton directions (21), for the
nonlinear system (19), are descent directions for ¢(r) in a neighbourhood of the
solution.

It is also the case that as the iterates converge, for each i€ A (r*),

(D\D;'); > +oo.

This unbounded behaviour may appear to be cause for concern; however, in Sections
5 and 6 we prove that theoretically this is not a problem. Moreover, our numerical
experience suggests that reliable numerical performance can be attained provided
sufficient care is taken with respect to implementation details.

4. A hybrid method

The Newton and linear directions, introduced in the previous sections, have similar
forms but differ in their definitions of diagonal matrix. Consider now a third choice:

D?=|D,D,'| where D, =diag(r), D, = 6 diag(g)+(1—6)D,, (23)

and 0<@<1. Clearly if 6 =1 then D°=|D,| and d is the linear step (22) as in
Algorithm 1. On the other hand, as 6 -0,

A"D?A"5 AD;'D,A"

(which, by Lemma 1, is positive definite in a neighbourhood of the solution), and
so the Newton direction (21) is approached asymptotically (i.e., as 6 > 0).
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Our remaining task is to define 6 € [0, 1] so that § > 0 if and only if (r, A) - (r*, A *).

Our idea is to let 6 encapsulate the optimality conditions. One possible choice is
__ max{max(|r;(g; = A)|/¥(r°)), max{max{|A| —e, 0}}

y+max{max(|r;(g;— )|/ ¢(r°)), max{max{|]A| - e, 0}’

(24)

where 0 <y <1. Clearly 0 is bounded above by one; assuming Z(r—b) =0 then
6 =0 if and only if (r, A) = (r*, A*). The following result indicates that, unless (r, A)
is optimal, D, has a zero-free diagonal. Consequently, when 6 # 0 and no component
of r is zero, D? is a positive diagonal matrix and so —AT(AD 2AT) ' Ag is a descent
direction for ¢(r).

Lemma 2. Suppose 0<vy<1. Assume 0 is defined by (24). Then D, satisfies®

(1—y)0I<|Dy|<(2—-(1-y)0)1.

Proof. By definition of the matrix D,, we can write
D, =diag(g) — (1—0) diag(Z™w).

Consider the ith diagonal element of D,. If |\;=Z[w|<1, it is clear that
(1-y)0<0<|gi—(1-0)A]<2-0<2-(1-17)6,

since 0<y<1. If [\;/>1 and 6 is defined by (24), we have

_ max{max(|r;(g; = A)|/ ¥(r°)), max{max{|A| —e, 0}
~ y+max{max(|r,(g; — A;)|/ ¥(r°)), max{max{|A|—e, O}

Hence

(1 6)max{max(|r;(g: = A;l/ ¥(r°))), max{max{|A[ e, O}} = v6.
Therefore

(1-0)(|A]—1)=< ye.
Thus

<1+ Y6 =1—(1—'}/)0
' 1-6 1-6 °

which yields
(1-0)x]l<1-(1-7)6.

Therefore
(1-y)6=<|g—(1-0)A|<2~(1-7)6,

and the result is established. O

? Recall: If M =(m,;) is a matrix, [M| is the matrix obtained by replacing m;; with -]m,-j| for all i, j.
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Therefore, D, is nonsingular when 60 # 0; consequently, the definition of 0 leads
to a descent direction. Moreover, 6 induces a smooth transition from the linear step
to the Newton step.

4.1. Computation of the hybrid step
We consider three different methods for computing the hybrid step.

4.1.1. Full space implementation

The hybrid step can be viewed as an approximate Newton step. Assuming (r, w) is
our current guess, where Zr = Zb, the approximate Newton step, in analogy with
(20), can be expressed as

[diag(gMDel —DrzT][ d] _ [—D,<g—ZTw)]
V4 0 d,] 0 '

Note that d is the hybrid direction defined above. The dimension of this system is
somewhat daunting, (2m — n) x(2m — n), and can be reduced by implicitly satisfying
Zd =0:

(25)

d
Solve[diag(g)|Ds|AT, —D,ZT][d"‘] =-D,(g—Z"w) (26)

and then
d<-A'd,. (27)

After solving this full-space system and obtaining (dx, d,,), the dual variables, A,
can be updated A" <A+ D,Z"d,; the primal variables, r, are updated using our
line search procedure along direction d, r* < r+ ad.

Note that as 6 - 0, i.e., as we converge to the solution, the matrix in (26) approaches
(D,+A",—D,~Z") which, under nondegeneracy assumptions, is full rank (and
bounded). This is the advantage of using the full-space implementation: the limit
matrix is well-behaved. The major disadvantage is that the system is still large,
m x m, and requires the computation of Z.

4.1.2. Reduced space implementations

It is possible to reduce the dimension of the system to be solved (and still compute
the same correction) by realizing that what is needed is either d, and Z%d, or w
and A'd, but not both d, and d,. More generally, consider the following simple
observations.

Lemma 3. Let M =[M,, M,] be full rank, U =null(M3)*, V=null(M7). Then the
matrix [ U, V] has full rank. [

Theorem 4. Assume M =[M,, M-] has full rank, U = null(M?), V =null(M7). Then
the system
Mv=b

4 Recall: the notation B =null(C) indicates that B is a matrix whose columns form a basis for the
null space of C.
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is equivalent to
[UTM, 0 ][v,] B [UTb]
0 VM, ]| v, Vb ]
Proof. From Lemma 3, [ U, V] has full rank. Hence Mv = b is equivalent to

[U VI™Mv=[U, V]"b. O
Corollary 5. To obtain [v,, M,v,] such that

[M,, MZJ[Z‘] = b,

2

the following algorithm suffices:
1. Determine U =null(M3J);
2. Solve U"M,v,=U"b;
3. Moo,«<b—M,v,. O

Range space implementation. If we define M, =diag(g)|Dy|A" and M,=-D,Z"
then we can solve (26) using Corollary 5:

Solve D™'A"d, = Dg (28)
and
de—-A"d,, A\T<g+D7?d (29)

The main computational work is the solution of the linear least squares problem of
order m X n. Note that Z is not required; this approach is particularly attractive
when n is small or A is sparse. The primal variables are updated via a linesearch
on Y(r): r «r+ad

Null space implementation. A null space implementation is obtained from Corollary
5by letting M, = —D,Z" and M, = diag(g)| D,|A". This implementation first requires
the computation of Z and then

l.s.
Solve DZ'w* = Dg (30)
and
ATd. ¥ de-D*(g-Z"w"). (31)

In this case an m x (m — n) least squares system is solved at each iteration; hence,
this approach is attractive when n is large. Note that Z is computed only once;
moreover, it is often possible to compute a sparse Z given that A is sparse (e.g., [6, 7]).

We conclude this section with a presentation of the simple hybrid algorithm. Bear
in mind that there are a number of numerical concerns, such as unequal row scaling
and stopping criteria, that must be taken care of before this algorithm can be reliably
used. These issues are briefly discussed in Section 7.
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When applying the linesearch procedure, instead of using a constant 7, 7* =
“max{7, 1 — 6"} is used in order to obtain final quadratic convergence. Thus, we have

ak=a§+7k(ai—a§), 7k=max{7,1—0k}, (32)

where a:,i and af are as defined in (16) and (18). Notice that the subscripts # and
* depend on k in general.

Let r° be an initial differentiable point satisfying Z(r’—b)=0; k < 0; Compute
an initial point w°.

Algorithm 2.

Step 1. Compute 0* from (24). Define D* from (23) and g* <sgn(r).

Step 2. Compute d“ and w**' using one of the three methods above.

Step 3. Do a line search on the piecewise linear function () (as described in
Section 2 and using (32)) to determine a”,

rFle r*+a*d* kek+1.

2

5. Global convergence

In this section, we establish global convergence of the linear and hybrid methods,
Algorithms 1 and 2. We make the following global assumption: The n X m matrix
A has full row rank n. Let P* be the orthogonal projector onto null(ZD"), i.e.,

P*=1-D*Z"(z(D*)*Zz")"'ZD*.

Both algorithms use a diagonal matrix D* &' diag(s¥) to yield the search direction
d*:

d* = — D*PkD*g*
=—(D")*(g" - Z"w""™), (33)
where w*™! is the least squares solution to

Is.
Dszwk+] — Dkgk,
and
) {lri‘l” ? for Algorithm 1,
S,— - _ .
|rE|/?|6% gk +(1—6%)(gk—ZTw")|™"> for Algorithm 2.

The first major step in the convergence proof is to show that | P*D*g*|| - 0. This
is established in Lemma 10 after several preliminary results.
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Lemma 6. Assume {d*} is defined by Algorithm 1 or Algorithm 2. Then
lim || P“D"g"|3=0, (34)

k—>o0

where a’ =min{a’: a¥> 0} corresponds to the first positive breakpoint in the direction
d* (17). Moreover,

lim ¥ (af-ab)gtd! =0,

k
k—>oco 8i *8i

Proof. Since ||r*||, is monotonically decreasing and bounded below, || r*||, converges;
therefore,

lim ([Jr*[l, = [|r**"]l,) =o. (35)

k—-o00
From (33),
g"'d"=—|P*D*e"|3;
therefore, since r**'=r*+a*d*,

(T P T P

k+1T k+1Tdk

=gk g r*— akg |
z(gk_gk+1)Trk+ak(gk_gk+1)Tdk+ak”Pkagk”§'
However, if gi # gk*! then g¥=—g**'; hence,
[T e L

= X 2girft+atgidl)—(a*—af)g" d* +ak | PD*g"|I3. (36)

kK
gi*gi

For gi # gi*", recall af is the breakpoint for equation i in direction d*: a* = —r%/d*.
k+1

Therefore, for gk # gt*!,

ri+akdd=(a* - a®)dk. (37)
Consequently, substituting (37) into (36),

I = s

= ¥ 2a*-algld!—(a* —ak)g " d" +ak| P*D"g"|3

gi*g;
=—<ak—az>(g”d"—-z g:fdf)

2 ¥ (ak—ak)gtd"+ak | PDrgH 2.
ghi=git!

p>

k+1
gi i

i

Next we establish that each term in the expression above is positive. The linesearch
stops before optimality is reached in the direction d*; hence, g"“Td" <0. But
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g d* =g"'d* —2 %« un ghd} and so it follows that
(g“d"—z Y gfd,-k)<o,
ghi=gi "

and therefore the first term is nonnegative. But, for gt # gi*', af < af and so

Y (af-ag)gidi =<0,
k =k
giFgi

which yields a nonnegative second term. Thus
0=<ag||P D" 3=Ir Il ="l
and therefore, applying (35),
lim | PD*g*3=0.

Similarly,
lim ¥ (af-at)gidi=0. O

Recall: We use the subscripts 1 and 0 to denote the components corresponding
to the non-activities and activities respectively. So, for example, Z, is the submatrix
of Z consisting of columns of Z corresponding to the nonzero components of r.

Lemma 7. Assume primal nondegeneracy; let r be an arbitrary point. Then Z, is of
full row rank. Moreover, if we assume that (r, A = Z Tw) satisfy complementary slackness
(9), then A is a dual basic solution. In addition, if we assume dual nondegeneracy,
then | (r)|=n.

Proof. Assume that there exist y, such that
Z{y,=0. (38)
From AZ" =0, we have
AgZs+A,Z]=0.
Hence
AoZivi+ A ZTy,=0.
From (38), we have AoZ,y, =0; from the primal nondegeneracy assumption, A, is
of full column rank. Therefore Z; y, =0. Thus
Z Ty, =0.
But Z" has full column rank; therefore, y, =0 and we have established that Z, is
of full row rank. Now, let us further assume complementary slackness (9); hence,
gi=2Zw
where A = Z"w. But AZ" =0 which yields AA =0 and so we obtain dual feasibility

(i.e., A is a dual basic point). Finally, dual nondegeneracy and full row rank of Z,
result in [&f|=n. O
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Lemma 8. Under primal and dual nondegeneracy assumptions, J is nonsingular at any
point (r, A =Z"w), where

J= [diag(g)|D9| _DrZT] '
Z 0
Proof. For any y=[y,, y1]" such that Jy =0, we have
diag(g)|Dslyo— D, Z7y, =0, (39)
Zyo=0. | (40)
Hence y,= A"z, for some z. Thus
diag(g)|Dy|ATz—D,Z"y, =0. (41)

First assume 6 # 0. Then, by Lemma 2, D, is nonsingular. Multiplying the above
by the full rank matrix Z diag(g)|D,'| yields

Z diag(g)|Dy| ' D,Z"y, =0,

which implies

Z, diag(g;)fD91|_anle)’1 =0.

From the primal nondegeneracy assumption and Lemma 7, it is clear that y, =0.
From (41), we have z=0. Thus, y,=0. Hence J is nonsingular.
Second, assume 6 =0. Complementary slackness and (41) yield

|DyolA5z=0 and D, Z]y,=0.

From primal and dual nondegeneracy and Lemma 7, |D,oAs and D,,ZT are
nonsingular, hence

y1=0, ZZO.

Therefore y,=0 and so J is nonsingular. [
The next result establishes that, in Algorithm 2, the multipliers are bounded in size.

Lemma 9. Assume that an ¢, problem is both primal and dual nondegenerate and
{A*=Z"w"} is obtained by Algorithm 2. Then {\*} and {w*} are bounded: there
exists M >0 such that

A<M and |w¥|<M.
|

Proof. Using (26), (d%, w**") is the solution to the following linear system:

k

ke , dh ok \
[diag(g")|D5|AT, _sz][wk?‘} =-Digh (42)
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Following Lemma 2, {D%}is always bounded. Thus the coefficient matrix is always
bounded. Moreover, following Lemma 2, the coefficient matrix in (42) is nonsingular
at any limit point (this is easily proved along the lines of the first half of the proof
of Lemma 8). It follows immediately that {A**'} and {w*"'} are bounded. [

We can now state the first major result.

Lemma 10. Assume {d*} is defined by Algorithm 1 or 2; assume primal and dual
nondegeneracy. Then

lim | P*D*g"||,=0, lim d“=0 and lim Df(g"~a**") =0.

Proof. Using Lemma 6, we know that

lim as||P*D*g*|3=0. (43)

(Recall: a¥% is the step to the first breakpoint from r* in the direction d*.) From
Lemma 9, there exists M >0, such that

I(g"=ZTw""")||< M. (44)

Now assume there exists a subsequence, which we denote with the use of an
under-score, satisfying,

{— | P*D*g"|3} > ¢, <0. (45)

We now prove that the corresponding subsequence of first breakpoints, {aX} is
bounded away from zero, i.e., a5 > c,, for some ¢,>0, and this will lead to the
obvious contradiction.
From the definition of 6* and (45), there exists ¢, € (0,1) such that 6> ¢,. To
see this assume the contrary: a subsequence {é"} of {6%} converges to zero. Then
B - Z7#) >0,

A A

which implies, by (25), that d*>0.Butd"= D"Pkag and so (45) is contradicted.
Recall, from Lemma 2, that for any i,

0°g" +(1-0")(gh - A= (1 —-y)8"=(1-y)c*>0. (46)
However,
k ko k k
K Ire IQ ge+(1-9" )(g<> <>)| )
Qo =—=p="" (using (31))
< dg (l.gi\> ZT k+]|) g
C3

>0 (using (44) and (46))

Therefore, by Lemma 6, || P*D*g*| - 0.
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Using (33), we have

ll(im D*(gk=A*")=0 and limd*=0.

k->00

k+1

Hence lim,_,o D¥(g*—A*"")=0 follows from the boundedness of D% (Lemma

2). O

The next result says that if the primal variables converge then so do the duals.
The point of convergence, (7, A =Z w), satisfies all optimality conditions except
possibly for [Xo|<e.

Lemma 11. Suppose {r*} and {w*} are obtained by Algorithm 1 or 2 and assume
{r*}->F, a limit point. Further, assume primal and dual nondegeneracy. Then {w*}
converges; i.e., there exists a point w such that

lim w*=w, (47)

k—oo

where w**! is defined from

l.s

Dszwk+] :_' Dkgk. (48)
Moreover,

|4 (F)|=n, AX=0, |x,|=e, whereA=Z"w. (49)

Proof. Using Lemma 10, we know that
D,I.((gk_ZTWk-F])eO.

Without loss of generality, assume

I A
0 Dy z;

where D;, is a diagonal matrix with zero-free diagonal, and D;, is the zero matrix.
But D*=|D{[D4]7"| and so

lim [Ds] '(gr —ZTw**") =0.
But, Lemma 2 established the boundedness of |Dj|; hence, there exists M > 0 such
that |[D§,]17'|> M. Therefore, for any convergent subsequence of w*, we have

where w is the limit point of the subsequence. (Note: g=sgn(7).) By primal
nondegeneracy and Lemma 7, Z] is of full column rank; therefore, the solution to
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(50) is unique. Since the limit point of any convergent subsequence of {w*} is a
solution of (50), and since by Lemma 9 {w"} is bounded, {w"} converges to w.
Finally, to show (49) note that

[A;, A, JA=0, where \" ¥ (w'Z,, w'Z,)

since AZ"=0. But, by (50), the magnitude of each component of A, is unity;
therefore, by Lemma 7, A, is order n. [J

Theorem 14 below is the next major result: it says that if the primal variables
converge, they converge to the optimal point. Before proving this theorem two
technical results are provided, the second of which we state without proof (the
proof is relatively straightforward and unenlightening).

Lemma 12. Assume {d*} is obtained by either Algorithm 1 or Algorithm 2. Suppose
there exist vectors u and v such that

Aju=—-A,v.
ghdi=—v"d}. (51)

Proof. From the definition of the direction d* (27), we know there exists d * such that
d"=-A"d\.
Thus
gl di=giAjd} (sincegi=g,)
=—v"AjdY (from (51))
=—pTd§. g

Lemma 13. Suppose 0€(0,1) and —1<B <1< . Then,

1+(1-6)B_ 1+(1-6)7
1+ 1+n

O

Theorem 14. Assume {r*} is obtained from Algorithm 1 or Algorithm 2. Assume
primal and dual nondegeneracy. If the sequence {r*} converges to a point r*, then r*
is optimal.

Proof. From Lemma 11, | (r*)| = n, {w"} > w* and if A* is defined A* = Z"w* then
AX*=0 with [A}|=e. Therefore, to establish optimality we need only show that
ATl = 1.
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Assume the contrary, i.e., for some i with rf =0, A¥> 1. (Note that this implies:
lim infy_. 0 >0). Then, there exists k, such that for k> k,,

|A¥|>1 forall i such that |A¥|>1,
and
Afri>0 foralljsuchthat|A¥]|=1.
If there exists |[A¥|>1 and Af*'r¥ >0 where k> k,, from
rl,('H = rl." — aks’."z(gl." — ,\lf+])
it follows that [ri™'|>|rf|>0, for all k>k,. (To see this note that sgn(r¥)=
—sgn(a’si (gf—A%*"). Hence, we see immediately that {r*} 4 0 which contradicts
that {r’} » r¥=0.

Now assume there does not exist k,> k; such that ri2A2"' >0, for any |A¥|> 1.
In Algorithm 1, the breakpoint corresponding to equation [ is given by
. 1

o =7,
"ogkgl-af

whereas for Algorithm 2,

afzrﬂgf*(l —09)Ar] gl —(1-0")Af|
ril(gr=ar™")  gi(gi =t

This latter expression can be simplified if we consider two separate cases. For
|A¥|<1, we have

&g = (1692 1-(1-0g/A;
J g;\(g’k__/\JI\+l) l_ngk+]

J

Hence, for I € o°, af - co. For |\¥|>1, since g¥ = —sign(A¥*") = —sign(A¥), we have

(gl = =(-0"A% 1+(1-6)A]]

Using Lemma 13, we know that

1+(1-6%)A¥] 1+ —-6%F

1+|AF] 1+A%
and
1+ =09AF] _1-(1-6%AF
1+|AF] t-AF 7
since 6% # 0.

1

Hence, when & is sufficiently large, we obtain, for both algorithms,

af<af foranyj#i |[A¥|<1. (52)
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Now let g* denote the new gradient after passing all the breakpoints with |A¥|> 1.
Then

ghd*=— Y gldf+ ¥ gfdi+gldt

A ¥|>1,ies A%<, jest

=— Y gidi+ Y g}‘Td}‘ —AE dk (using Lemma 12)

A¥|>1,iesd A*¥<1,jest
=|Aﬂ>zl:,ied (—A;k—g:-()d?'*‘l/\ﬂ}]:,je&q (g}(—)‘;k)d;(.
But
—AfdE<gidf<0 for|A¥|>1,r¥=0,
and
—|A¥df|>gid} for|a¥|<1,r¥=0.
Hence

gt dk<o.

k+1,y k+2
A

Therefore, the linesearch will yield r; >0, a contradiction. [

Lemma 15. Assume (1) is both primal nondegenerate and dual nondegenerate and
{(r*, A*)} is obtained by either Algorithm 1 or Algorithm 2. Then {r*} and {w*: Z"w* =
A*} have a finite number of limit of points. Moreover, for any convergent subsequence
{(r*, A*)} with {a*||d"||} having a positive limit, we have

lim D¥(g"—A%)=0, wherer*=2ZTw*

k—>o0

Proof. It is clear that {r*} is bounded. From Lemma 9, {A*} is bounded. Moreover,
from Lemma 10,

lim D7 (g"—a"")=0. (53)

The nondegeneracy assumptions imply that the set of points 7" satisfying complemen-
tary slackness, i.e., ¥"={(r, w): D,(g—A)=0, A = Z"w}, is a finite set. Hence, any
limit point of {(r*, ZTw**")} belongs to ¥. Thus, {r*} and {A**'} have finite number
of limit points. This implies the sequence {(r*, A*)} has a finite number of limit points.

Now assume a subsequence {(r*, A*)} converging to (7 X) with {a*||d*||} having
a positive limit. (To simplify the notation, we use subscripts k to denote a sub-
sequence as well but mention it is a subsequence explicitly.) Following primal
nondegeneracy assumption, the corresponding subsequence has a*|dg| = c,> 0 for
some co> 0 (otherwise a“d§ = —Ag(a*d¥) converging to zero leads to a*d* converg-
ing to zero and thus a*d* = —a*ATd% converging to zero).
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Following Lemma 6, lim, . a& | P*D*g"||3=0. The nondegeneracy assumptions
imply that lim,,.a&di=0 and subsequently lim;,. a5d%=0. Hence,
lim,_ o abd& =0. Immediately, we have lim,_ . r& =0. Using (15) and (33),

KT 8; .
al == gr =~y 1<ism. (54)

Moreover, under the nondegeneracy assumptions, the corresponding sequence
{lg& — A&} must be bounded away from zero for k sufficiently large. Hence, in
light of Lemma 2, {a§} is bounded. Since lim,_ . d* =0 (Lemma 10), it follows that

lim Z aog,d"—O

k—>o0 g"
Using Lemma 6,

lim Y (af-ab)gkdi=0.

k>co gl g™
Hence

lim Z ffdf‘=0.

k>0 g‘\

For as >0, gk # g,,“. (Recall: a; is the largest breakpoint smaller than the optimal
breakpoint a%.) Thus

lim r,,—llm ardi=0.

k—o0

Therefore, we have ri'ry > 0 for k sufficiently large. Applying the same arguments

of the boundedness of {ao}, we conclude {aj} is also bounded. Again from
lim, o d*=0,

lim a,,dk—O

k—o0

Using (18) or (32), we have

it =ri+prasdi+*akdr.
Hence

min(|ry"') = min(|r} + p*asdt + r*akd¥|)

=min(3(gir¥+ 7"a:‘kg{‘df)) (for k sufficiently large).
Using (54) and the definition of a,,; (16), it is easy to verify
*gl 1dy = aigidy.

Hence, for k sufficiently large,

min(|r;™") = min(3|r; + *a ¥d}]) = min(3p*|r¥)).

We prove by contradiction that the corresponding D¥(g* —A*) converges to zero.
Assume otherwise. Then there exists ¢ > 0 and a subsequence with | Df(g* —A*)||> ¢
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for k sufficiently large. Let p*=1—7* where either 7* =7 (for Algorithm 1) or

* = max(r, 1-6%) as in (32). Hence there exists ¢, >0 with p*> c,. Therefore

min(|r{ ")) = ¢,>0. (55)

Since ||rk*1 = ré| = a*||d§]| = co> 0, we conclude that max(|rg*"|) is bounded away

from zero. From (53) and nondegeneracy assumptions, zero is a limit point of the
corresponding subsequence min(Ir:‘“D. But this contradicts (55). In conclusion, the
corresponding D¥(g" —A*) converges to zero. [

Theorem 16. If an ¢, problem is both primal nondegenerate and dual nondegenerate,
then the sequence {(r*, A*)}, generated by either Algorithm 1 or 2, is convergent.

Proof. From Lemma 15, {r*} and {w*} have finite number of limits points. Let
&., #., and & denote the sets of limit points of {r*}, {w*} and {(r*, w*)} respectively.
We prove, by contradiction, that {(r¥, A¥)} can have exact one limit point.
Suppose {(r*, w*)} has another limit point, e.g., (7, w). From the nondegeneracy
assumptions, w# w and 7 # r.
Define 6 = min{§,, §,} >0 where

8, =3min{|w—w|: we %, w# w}, 8,=3min{|F—F|: Fe &,, F # F}.

Let

Cs ={(r, w): ||w—w| <38 and ||F—r|| <38}.

Since (7, w) is a limit point, (r*, w*) belongs to C; infinitely often. In order for the
sequence {(r, w*)} to have another limit point (7, w), {(r*, w*)} must leave C;
infinitely often. Let % denote the subsequence corresponding to all such points
which leave Cs, i.e.,

9 ={(r*, w*): (r*, wk) € C; but either ||r**' — F|| =38 or | w""' — W] =38}

Assume there exists a subsequence of % with a*d* converging to a positive limit.
From Lemma 15, the corresponding {D*(g"* —A*)} converges to zero. Using (20),
the corresponding {d%} also converges to zero. Thus, there exists k, >0 such that,
when k> k,, ||d%||<318. Hence

o —w* < W —w* +]dL] <8.

Hence w*™'e{w: |w— w| =< 8}. If there exists a infinite subsequence with |r**'—

7| = 18, there exists a limit point 7 of r**' with 7 # 7. But the corresponding {w
has a limit point w e {w: |w — w|| < 8} (Recall that {w"} and {r"} are bounded). This
means that w=w by definition of 8. But this is impossible because (7, w)€ ¥ but
7 # Fand w = w. Thus, for k sufficiently large ||w"™' — w| = 35. However, this indicates
the existence of a limit point w with ||Ww—w| <8 and ||w— w||=38. Again, this is
impossible from the definition of é.

k+]}
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Consequently, for (r*, wYe K, a*d* converges to zero. This implies that for k
sufficiently large, ||r**' + r*|| <318 and |w*"' — w|| = 15. But this indicates the existence
of a limit point (7, w) with 7= but w # w. This is again a contradiction.

We conclude that {(r*, A*)} can have only one limit point. [J

It is now clear that under nondegeneracy assumptions, Algorithms 1 and 2 generate
points that converge to the optimum point. This follows from Lemma 11, and
Theorems 14, 16.

6. Quadratic convergence

In this section we establish that Algorithm 2 produces a sequence {(r*, w*)} that
converges to (r*, w*) at a quadratic rate. The primary difficulty in establishing this
is the discontinuous nature of the first derivatives of ¢. This problem is circumvented
by considering a finite set & of systems of nonlinear equations, where each system
in & has the following form:

F(»)¥ D(g(v)-Z"w)=0, Zr=0, (56)

where

r sign(r¥) if rf#0,
y= w > g(v)iz

v if r¥=0,

and »; can be either 1 or —1. Note that y* = (r*, w*) is a solution to each system;
each system is continuously differentiable in a neighbourhood of y*.
The Newton step at y*, for each of the above systems F,, is defined by

J:(/dk Z—Fv(yk)

where

P L R e
and

~ [EH

Fy(y‘>=[ o | (57)
Note that the hybrid step d* satisfies

B,«d*=—F,(y"), (58)
where

S k| kT
Buk:[dlag(gZ )|D9| DO,Z :|’ (59)
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and v* = g* Itis clear that F,«e & (i.e., d* is a Newton-like step for some F xe %).
Of course F,«# F,«+1, in general, and therefore quadratic convergence is not auto-
matic; however, a slight modification of Theorem 3.4 in [8] yields a viable approach.

Theorem 17. Let ¥ ={F,:R™->R™} be a finite set of functions satisfying:

1. each F, is continuously differentiable in an open convex set D,

2. there is a y* in D such that F,(y*)=0 and VF,(y*) is nonsingular for each
F, e %;

3. |F.(y)=F,(y)|<c|ly—y*| forall ye D, F, e % and some ¢ = 0.
Let {B*} in £(R™) be a sequence of nonsingular matrices. Suppose that for some y°
in D the sequence

Y=y = (BT FA(¥Y), k=0,1,...,
remains in D, y" # y* for k>0, and converges to y*. Moreover, assume

IB* =VE«(y®) =0 y* = y*|)- (60)
Then {y*} converges quadratically to y*. O

We now show that Algorithm 2 can be described in a manner consistent with
Theorem 17 and therefore quadratic convergence is achieved. Specifically, (60) must
be established: the next four results establish several preliminary bounds.

First we show that the change in the dual variables, A, is bounded by the distance
to the solution. Recall the full space implementation (27) of Algorithm 2: the hybrid
step d* solves

dk

[diag(g")|D}|A”, —DfZT][d:] =-—D¥g"-Z"w"), (61)

and d* = ATd%. We denote the m x m matrix C* by

C* =[diag(g"*)|D4|AT, -D*Z™].

Lemma 18. Assume that {(r*, w*)} is any subsequence, convergent to y* = (r*, w*),
obtained by Algorithm 2. Then,

IR = 2% =%l =0l y* = »*]), (62)

where A = Z Tw.

Proof. Since

dr o
[d’:] =-C"'D(g"~Z"w"),
we immediately obtain

W' = wHl < LIC v =y

and since {||(C*)7"||} is bounded, the result ensues. [
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Next we show that 6 is bounded by the distance to the solution.

Lemma 19. Suppose {0*} is defined as in (24). Then,
6" < L[|l y* - y*|. (63)

Proof. By definition of 6%,

0= Loy § (et - A%y
i=1

Thus, from (57) and (56), we have
6" < Lo|| F.+ (")
= Lol F.4(¥*) = Fe(y®)],
<L y*~=y*|.,

for positive constants Ly, L, . The last inequality comes from continuity and finiteness
of ¥ O

Lemma 20. Assume that an ¢, problem is primal and dual nondegenerate and that the
sequence {(r,, w)} is generated by Algorithm 2. Then, for each i such that r¥ =0,

ai=1=0(]|y* = y*|). (64)

Moreover, the sequence of optimal stepsizes, {aL}, converges to unity.

Proof. First we establish (64). For any i corresponding to an activity at the solution,

k
-
af—1=—p-1

dk

z(rf(gt‘—(l—ek)Af)_
ri(gi—Ai"")

1) (by (31))

A=Ak + o*Ak
= k k+1

gi _/\l

But since i corresponds to an active constraint, then, by dual nondegeneracy,
gi—Af"" is bounded from zero. Therefore, since 6% >0 and Lemma 18 holds, we
have o —1=0(|| y* —»*||) and lim,_ . af =1.

Next we establish that the optimal stepsize, ai , converges to unity. First we note
that the stepsizes to the breakpoints of the inactive constraints go to infinity. That

is, if i corresponds to an inactive constraint at the solution,

k

. ri
I!l_)n; aF =00, (65)
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This is true because d*- 0 but r* is bounded from zero when i corresponds to an
inactivity at the solution. (To see that d¥ -0, notice that by convergence 6 -0
which implies D¥(g* — Z"w*) > 0; the result follows from Lemma 8 and (25).) Next
we prove that the stepsizes to the breakpoints of the activities all go to unity. To
establish this we first prove that’

gt d}|<lgs dgl.
To see this recall, from dual feasibility and dual nondegeneracy, that
gF¥A, =—AoA¥, where max{|A}|} <1.

Moreover, for k sufficiently large, it is clear that g} = g¥. Hence, from Lemma 12,
we have

gdt=at'al.
Since |AF| <1, we have

—gk'dk< ¥ |d¥ for sufficiently large k.

ied
Therefore,
dek
II%ET‘]TIS max{|A}[} <1.
o“%o

Thus, when k is sufficiently large,
g} i
|godol

which implies

<1,

g d¥|<|gk'dk|=—gk'ds for sufficiently large k. (66)

Now let g*” denote the gradient after crossing all the breakpoints corresponding to
the activities. Then, by (66),

g"'”d" = —géTd(';' + ngdf >0 forsufficiently large k.

This, together with (65), implies that the optimal steplength equals one of the
steplengths corresponding to an activity. Thus, the optimal steplength, a ¥, converges
to unity. [J

Lemma 21. Assume {(r*, w*)} is generated by Algorithm 2 where {a*} is the stepsize;
assume primal and dual nondegeneracy. Then

la* —1|< L,|| y* - y*||. (67)

> Notation: In this section subscript 0 refers to components corresponding to activities at the solution,
i.e., r¥=0. Subscript 1 refers to components corresponding to inactivities at the solution, i.e., r¥ # 0.
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Proof. From the computation of the steplength (32), convergence, and Lemma 19,

it is clear that
a*=al—-0"al+0(]|y*—y*|) for k sufficiently large.

Furthermore, from the proof of Lemma 20, * € «.
From (62),

|l =1 =0O(]|y* = y*]D, (68)
therefore,
la* —1|=|ai=1- 6"+ O(] y* - y*|)
<laf—1]+ 6" +O(]| y* - y*)
< L,|y*-y*|| (using(68)and Lemma 19). O

Denote B* = B,«S* where

k
Sk = diag([l/ea em]) ,

where B, is defined as in (59). But y**' = y*+ §*7'd* where d* is defined by (58);
therefore, from Lemma 21, we have

IS* =1l =0 y* = y*|).
The hybrid step defined by Algorithm 2 satisfies

B (y"" ' =y") = =Fx(»").
Lemma 22. Assume {y"} is obtained through Algorithm 2; assume primal and dual
nondegeneracy. Then

IB* =V F (y)I< L] y* = y*|

for some F,~€ %.

Proof. From continuity and Lemma 21, it is clear that
B =¥ = (B —Ji) S + (Jh—JH) Sk + (8K = 1) %
=O(IB,x = I )+O(]| ¥* = y* I+ Ol y* = y*[D.
But,

Bae gk = [diag(gk)|D,§|— D} 0]

0 0]
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Consider the (1, 1)-block of B,x—Jk. It is clear that, for k sufficiently large,
gt =sign(gs—A4), g =AF. Hence
Idiag(g*)lg" — (1—6%)A%| = (g" = A")
= || diag(g6)lgs — (1 0%) Aol — (g0 = A0)ll>
+||diag(g1)|gy — (1— 0)AT[= (g7 —AD)>
<[l6“Aoll+ 1T = AT+ 6* AT [+ [|AT — AT
Thus, by Lemma 19,
Idiag(g“)|g" —(1-0)A "~ (g“ = A“) .= O]l y* = y*|.).
Therefore,

|B*=J%|=0(y"=y*). O

The assumptions of Theorem 17 are now established; quadratic convergence of
Algorithm 2 follows immediately.

Theorem 23. Suppose the ¢, problem is primal and dual nondegenerate. Assume the
sequence {(r* w*)} is obtained from the Algorithm 2. Then y*=[[+] converges
quadratically to y*=[.]. O

7. Numerical testing

In this section we provide numerical results concerning Algorithm 2, the hybrid
method (New). In particular, we compare our range-space implementation of this
algorithm — see Section 4 — with our implementation of the interior point algorithm
described in [12]. We denote the latter method by Dual. Our comparisons are based
on the number of iterations: since the dominant work in both implementations is
the solution of a linear least squares problem at each iteration, of size m X n, the
number of iterations accurately reflects the overall relative computational cost.

Our stopping criterion for both algorithms is based on the satisfaction of the
optimality conditions:

| DE(g* = A*" ) ||+ |max(|A] —e, 0)]| < 107",

where machine precision on our system is approximately 107'°. The origin is a
natural starting point for algorithm Dual; the starting point for New is computed
as follows:

l.s.
r<b—A"x°, where ATx° = b,

,
Ao ——— 1",
emax(]rl)*r
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The settings of the parameters for Algorithm 2, New, are:
7<0.975, 7y<0.99.

Algorithm Dual also uses 7=0.975 in the linesearch algorithm; there are no other
parameters.

We have implemented the methods in PRO-MATLAB [13] using SUN 3/50 and
3/160 work-stations. The linear least squares subproblems are solved with the
orthogonal QR-factorization using row interchanges for greater stability (row inter-
changes are advisable when a least squares problem involves widely varying row
scalings [20]). No account was made of sparsity in our experiments.

Our experiments are not exhaustive; our purpose here is to determine the viability
of our approach. Specifically, does the ultimate quadratic convergence appear to
yield significantly fewer iterations in practise?

We have generated several kinds of test problems. First, since ¢, minimization is
often used in a function approximation context [15], we have tried several such
problems. We have also generated several random problems of varying dimensions.
Finally, despite lack of theory for degenerate problems, we have experimented with
degenerate and near-degenerate problems.

Problem 1. Approximate following f(z), evaluated for z=0 (1/m) 1 by a polynomial
of degree n—1:

$(2)= Y .

n=>5, fi(z) =exp(z): see Table 1. n =6, f5(z) =sin(z): see Table 2.

Table 1 Table 2

Number of steps Number of steps

m Dual New m Dual New
100 18 8 100 15 9
200 19 11 200 16 8
400 21 10 400 16 9
600 21 12 600 17 9

Problem 2. Approximate following f(z), evaluated for z=0(1/m) 1 by a polynomial
of degree 10:

$(2)= 3 az.
j=1
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Let x=(a,;,..., a,).

1 if0.1<2z=<0.2,
0 otherwise.

f3(2)=€Xp(Z)+{

See Tables 3 and 4.

Table 3 Table 4

Number of steps Number of steps

m Dual New m n f(2) New
40 30 13 1000 5 fi(2) 13

100 27 12 1000 6 fi(2) 10

200 29 12 800 10 fi(2) 12

500 33 12 1000 10 f3(2) 15

Problem 3. Random problem. See Tables 5-8.

Table 5 Table 6

m =150 m =100

Number of steps Number of steps

n Dual New n Dual New

10 25 9 10 25 10

20 25 2 20 26 13

30 25 10 40 26 13

40 23 9 50 26 11

70 25 11
90 23 10

Table 7 Table 8

m=150 m =200

Number of steps Number of steps

n Dual New n Dual New
10 26 10 10 26 13
20 27 13 20 27 17
50 26 17 50 27 16
70 27 11 70 27 19
90 27 13 100 26 15

135 24 12 140 26 14

140 23 9 160 25 14

190 24 9
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Problem 4. Degenerate problems. In theory, the convergence and the convergence
and the convergence rate of the algorithm is not guaranteed under the degenerate
cases. Our experiments, however, indicate that the performance of the algorithm is
not affected.

Dual degenerate problems. At the solution, the multipliers of ndeg activities are
equal to either 1 or —1. m =100. See Table 9.

Table 9

Number of steps

n ndeg Dual New
50 5 27 14
50 10 27 13
70 15 25 11
70 20 27 10

Primal degenerate problems. At the solution, there are ndeg activities which are
redundant in forming a maximum linearly independent set of activities. m = 100.
See Table 10.

Table 10

Number of steps

n ndeg " Dual New
20 5 25

40 10 25 12
70 15 24 10
90 9 9

Problem 5. Primal near-degenerate problem. These problems are primal nearly
degenerate in the sense that there are ndeg residuals that are active up to a tolerance
of 6. We believe that the degeneracy does affect the local quadratic convergence
region. However, the algorithm still performs reasonably well. m =50, ndeg =2,
5=10"": see Table 11. m =100: see Table 12.

Remarks. In general, the quadratically convergent Algorithm 2 (New) provides a
clear advantage over the (linear) interior point method ( Dual) on our test collection.
The number of iterations required by New is always fewer, usually by a factor
between two and three. New wins by the smallest margin on near-degenerate
problems.
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Table 11 Table 12

Number of steps Number of steps

n Dual New n Dual New
10 25 14 10 25 16
20 25 15 20 26 21
30 25 16 40 26 21
40 25 18

The number of iterations required by New is not quite as consistent, over different
problems and different dimensions, as the number required by Dual. For example,
on the random problems, Dual varies between 23 and 27 iterations whereas New
ranges between 9 and 17. This greater variation is probably due to different radii
of convergence for Newton’s method. Nevertheless, the number of required iterations
is almost never more than 15 and is considerably more consistent than number of
iterations required by a finite pivoting algorithm.

8. Conclusions

We have presented a new global and quadratic algorithm for the linear ¢, problem.
Computationally, the algorithm appears to be consistently superior to the interior
point approach [12], typically requiring a factor of two to three fewer iterations.
(The iterations are comparable in cost and so the overall running times compare in
a similar way.) To support this claim consider Table 13 in which, on a representative
example, we compare values of 6* for the two algorithms.

Comparing the values of 6, it is difficult to distinguish between the two algorithms
for the first eight iterations; shortly after that second-order convergence kicks in for
our new algorithm whereas Dual continues to exhibit linear convergence. This
example is typical.

The quadratic convergence property stems from the nonlinear expression for
complementary slackness and the resulting Newton-like process; the integration of
the Newton process with a (linear) global affine scaling method comes in part
through the use of a ‘“‘square-root” scaling matrix to define the linear algorithm
(Algorithm 1). The use of this scaling is compatible with the fact that “constraint
lines”, i.e., r;=0, must be crossed, in general.

The linear ¢, algorithm proposed here is probably most applicable to large-scale
problems. There are several reasons for this. First, Algorithm 2 (New) seems fairly
insensitive to problem size: it appears that about 15 iterations will be required,
regardless of dimension. Therefore, this method will be increasingly attractive,
relative to finite pivoting algorithms, as the dimension grows. Second, for sparse
problems the technology required to exploit sparsity is only that required for solving




T.F. Coleman, Y. Li / An affine scaling method for linear ¢, problems

Table 13

Change of 6 for random (60, 12)

221

Iteration New Dual
1 6.68708 e —02 5.66975 e —01
2 2.94760 ¢ —01 2.70565 ¢ —01
3 1.37327 e —01 1.44938 ¢ —01
4 7.80604 ¢ —02 5.23090 ¢ —02
5 2.49524 ¢ —02 6.83901 ¢ —02
6 8.45633 ¢ —03 7.05475 ¢ —02
7 8.48194 ¢ —03 3.17295e —03
8 3.72855 e —04 6.34264 ¢ —04
9 1.54264 ¢ —04 1.57652 ¢ —02
10 2.52256 e —05 1.12097 ¢ —02
11 1.90326 ¢ —09 2.49742 ¢ —04
12 1.33204 ¢ —12 3.60838 ¢ —06
13 1.46895 ¢ —06
14 1.55962 ¢ —07
15 492358 ¢ —08
16 1.06442 ¢ —08
17 2.72495 ¢ —09
18 8.21490 e —10
19 1.74925e¢ —10
20 5.06344 e —11
21 1.27783 e —11
22 3.32228 e —12

a sequence of sparse linear least squares problems: this is a heavily studied problem
with techniques available and research ongoing. Finally, the new method is attractive
for parallel computation in that the number of outer iterations (sequential steps) is
modest; moreover, parallel techniques for solving linear least-squares problems have
been developed (e.g., [5] and [4]) and research is continuing in this area.
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